Zidovudine azido-reductase in human liver microsomes: activation by ethacrynic acid, dipyridamole, and indomethacin and inhibition by human immunodeficiency virus protease inhibitors.
نویسندگان
چکیده
AZT (zidovudine, 3'-azido-3'-deoxythymidine), although metabolized primarily to AZT-glucuronide, is also metabolized to 3'-amino-3'-deoxythmidine (AMT) by reduction of the azide to an amine. The formation of the myelotoxic metabolite AMT has not been well characterized, but inhibition of AMT formation would be of therapeutic benefit. The aim of this study was to identify compounds that inhibit AMT formation. Using human liver microsomes under anaerobic conditions and [2-14C]AZT, K(m) values of AZT azido-reductase, estimated by radio-thin-layer chromatography, were 2.2 to 3.5 mM (n = 3). Oxygen completely inhibited this NADPH-dependent reduction. Thirteen of the 28 compounds tested inhibited the formation of AMT. In addition to the CYP3A4 inhibitors ketoconazole, fluconazole, indinavir, ritonavir, and saquinavir, metyrapone strongly inhibited AMT formation. An unexpected finding was the more-than-twofold increase in AMT formation in the presence of ethacrynic acid, dipyridamole, or indomethacin. Such activation of toxic metabolite formation would impair drug therapy.
منابع مشابه
Resistance mechanism of human immunodeficiency virus type-1 protease to inhibitors: A molecular dynamic approach
Human immunodeficiency virus type 1 (HIV-1) protease inhibitors comprise an important class of drugs used in HIV treatments. However, mutations of protease genes accelerated by low fidelity of reverse transcriptase yield drug resistant mutants of reduced affinities for the inhibitors. This problem is considered to be a serious barrier against HIV treatment for the foreseeable future. In this st...
متن کاملComparison of inhibition potentials of drugs against zidovudine glucuronidation in rat hepatocytes and liver microsomes.
Hepatocytes and liver microsomes are considered to be useful for investigating drug metabolism catalyzed mainly via glucuronidation. However, there have been few reports comparing the glucuronidation inhibition potentials of drug in hepatocytes to those in liver microsomes. 3'-Azido-3'-deoxythymidine (AZT, zidovudine) glucuronidation (AZTG) is the major metabolic pathway for AZT. In this study,...
متن کاملInhibition of methadone and buprenorphine N-dealkylations by three HIV-1 protease inhibitors.
Ritonavir, indinavir, and saquinavir, all human immunodeficiency virus-1 protease inhibitors with a potent antiviral effect during triple therapy, are extensively metabolized by liver cytochrome P450 3A4. As this P450 isoform is involved in the metabolism of about 50% of drugs, coadministration of protease inhibitors with other drugs may lead to serious effects due to enzyme inhibition. Among t...
متن کاملCurrent antiretroviral drugs for human immunodeficiency virus infection: review article
Currently, there are about 37 million people worldwide living with human immunodeficiency virus (HIV) /AIDS, with an estimated two million new cases per year globally. According to estimates from the World Health Organization (WHO), only 75% of the population with HIV know their status. Initially, HIV infection was associated with significantly increased rates of mortality and morbidity. Howeve...
متن کاملP450 interaction with HIV protease inhibitors: relationship between metabolic stability, inhibitory potency, and P450 binding spectra.
More than 60 human immunodeficiency virus protease inhibitors were examined for the structure-activity relationship between metabolic stability, CYP3A4 inhibitory potency, and substrate-induced binding spectra with a ferric form of P450 in human liver microsomes. A positive relationship was found between CYP3A4 inhibitory potency and metabolic stability; namely, compounds that were more potent ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Antimicrobial agents and chemotherapy
دوره 42 7 شماره
صفحات -
تاریخ انتشار 1998